Experimental Comparison of Three Subgroup Discovery Algorithms: Analysing Brain Ischaemia Data
نویسندگان
چکیده
This paper presents experimental results of subgroup discovery algorithms SD, CN2-SD and Apriori-SD implemented in the Orange data mining software. The experimental comparison shows that algorithms perform quite differently on data discretized in different ways. From the experiments, performed in the brain ischemia domain, it is impossible to conclude which discretization is the most adequate for subgroup discovery.
منابع مشابه
Supporting Factors to Improve the Explanatory Potential of Contrast Set Mining: Analyzing Brain Ischaemia Data
The goal of exploratory pattern mining is to find patterns that exhibit yet unknown relationships in data and to provide insightful representations of detected relationships. This paper explores contrast set mining and an approach to improving its explanatory potential by using the so called supporting factors that provide additional descriptions of the detected patterns. The proposed methodolo...
متن کاملThe False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کاملAnalysis of Example Weighting in Subgroup Discovery by Comparison of Three Algorithms on a Real-life Data Set
This paper investigates the implications of example weighting in subgroup discovery by comparing three state-of-the-art subgroup discovery algorithms, APRIORI-SD, CN2-SD, and SubgroupMiner on a real-life data set. While both APRIORI-SD and CN2-SD use example weighting in the process of subgroup discovery, SubgroupMiner does not. Moreover, APRIORI-SD uses example weighting in the post-processing...
متن کاملAPRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery
& This paper presents a subgroup discovery algorithm APRIORI-SD, developed by adapting association rule learning to subgroup discovery. The paper contributes to subgroup discovery, to a better understanding of the weighted covering algorithm, and the properties of the weighted relative accuracy heuristic by analyzing their performance in the ROC space. An experimental comparison with rule learn...
متن کاملUsing Subgroup Discovery to Analyze the UK Traffic Data
Rule learning is typically used in solving classification and prediction tasks. However, learning of classification rules can be adapted also to subgroup discovery. Such an adaptation has already been done for the CN2 rule learning algorithm. In previous work this new algorithm, called CN2-SD, has been described in detail and applied to the well known UCI data sets. This paper summarizes the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005